If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-20x+24=0
a = -4; b = -20; c = +24;
Δ = b2-4ac
Δ = -202-4·(-4)·24
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-28}{2*-4}=\frac{-8}{-8} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+28}{2*-4}=\frac{48}{-8} =-6 $
| -4=f/2-5 | | 1/2(2x-6)+3=8 | | g/1+1=2 | | 2n−n=18 | | -10+2x=-18 | | 190+.15x=307 | | 7-(1/2c)=1/4c-7 | | 55-15=5(x-9) | | 1/2(-x)=2x+10 | | 5r^2-32=148 | | 230+.15x=368 | | 17x+1=12x+6 | | 19=4.5+4.5y | | 5x-5=11x+7 | | (5x-3)+(47-x)=180 | | -16-24=x | | 230+0.15x=368 | | 65+40+(x+83)=180 | | -3m+6=-6m | | 2y2+10=74 | | 5t-5=11t+7 | | 2x+1x=27.50 | | 3+5u=18u= | | 1/2(-x)=10 | | 11.04+x=1.87 | | 167-u=269 | | -k+2=1-2k | | 15x-9/16=206 | | 3(t–2)=12 | | 1.8/1.2=6/n | | 2k+2=-k | | 5(x-4)-8x=9-3(4x-2) |